Kluster Series A

Kluster funding slide deck (Source: Insider)

UK-based Revenue Intelligence vendor Kluster closed on a £4 million ($5 million) Series A round led by the Foresight Group.  Other investors include SuperSeed and Cognism CEO James Isilay.  The round raised total funding to $6 million.

Kluster helps sales teams monitor sales data and trends.  Kluster’s AI aids sales managers in building quarterly and annual roadmaps that include hiring plans, targeted call counts, prospects to reach, and opportunities to generate.  These KPIs provide a set of plans and objectives for the upcoming period.  Kluster then monitors performance against the plan, updating the forecast, and recommending actions to reach objectives.

Kluster also supports stress testing, executive dashboards, and scenario modeling.

The funds will be deployed towards establishing an American presence and building out its go-to-market and executive teams.

“It has never been more important to plan and execute revenue strategy than it is today,” said Kluster CEO Dan Thompson.  “With the recent VC bubble, the metrics that mattered went from growth, burn, and margins to growth, growth, and growth.”

Continued Thompson, “The bubble burst, and companies have now rediscovered the importance of rigorous planning, robust strategy, and comprehensive revenue reporting.  Which is why I am delighted to partner with Foresight and deepen our relationship with SuperSeed, to bring our solution to this problem to the global market.”

The AI boom helped Kluster “get through the door,” said Thompson.  “AI is pretty buzzy, but fundraising is always tough, and it was definitely more rigorous than it would be in the past.”

Kluster has grown to 30 employees since its 2016 founding.  Half of its revenue comes from the US and Canada.  It claims to have a net revenue retention rate above 100% and strong word of mouth, with referrals generating 40% of its income.

“They (Kluster) have a strong product-market fit, and I’m relieved to see a platform that enables companies to forecast revenue more accurately,” remarked Foresight MD Jack Eadie.  “Kluster’s team is shaping the future of sales, and I am eager to see what they develop next.”

Kluster funding slide deck (Source: Insider)

Qualified GPT

Vendors are quickly moving to integrate generative AI into their offerings.  This week, Qualified and Clari announced ChatGPT functionality.  Qualified GPT, which the firm describes as “Generative AI for the Pipeline Cloud,” helps B2B vendors “harness the power of AI and engage and convert their website visitors at scale.”  The firm views ChatGPT as a “new platform on top of which we will build the next version of Qualified.”

When launched four years ago, Qualified focused on predictive modeling and Predictive AI to identify buying intent signals, particularly those generated from website data.

“At Qualified, our core philosophy has always been to provide the most powerful approach to pipeline generation using a combination of people, data, and automation,” said CEO Kraig Swensrud.  “With the rapid advancements in Generative AI, we will be able to provide even more robust automation to our customers, allowing them to scale their efforts, focus on their highest priority tasks, and ultimately crush their pipeline and revenue targets.”

Qualified GPT supports generative text apps that automate engagement prompting, copywriting, messaging, and chatbots.  Initial features include:

  • Auto Pounce: Automatically sends engagement prompts (or “greetings”) that serve as conversation starters for website visitors that fall within a firm’s ICP.
  • Auto Correct: Qualified GPT corrects misspellings, fixes grammar errors, and proofreads responses, “helping your sales reps deliver speedy, professional responses.”
  • Auto Tune: Enhances rep dialogue while chatting “to sound more eloquent when speaking to potential buyers, helping every rep strike just the right tone with their important customers.”
  • Auto Expand: Reps can enter a few words or bullet points, and Qualified GPT will craft professional messages.
  • Auto Suggest: AI-powered recommended conversation responses that keep reps on message and speed up response times.
  • Auto Translate: Translates messages, displaying both questions and answers in the customer and sales rep’s language.
  • Auto Personalize: Changes or recommends website text “based on visitor data to drive the highest engagement and conversion.”
  • Auto Summarize: Summarizes conversations and website behavior, providing sales reps with a “succinct read out of Account activity to date.”

Qualified GPT will be rolled out as a “limited release to a subset of Pipeline Cloud customers this spring.”


Continue to Clari RevGPT, Powered by ChatGPT

Einstein GPT

On the same day that Microsoft launched Copilot, Salesforce announced Einstein GPT, its generative AI service that combines Salesforce’s own AI models with external models such as OpenAI’s.  Einstein GPT supports personalized content creation across all of Salesforce’s clouds and Slack.  For example, Generative AI functionality can write personalized sales emails, author customer support responses, compose targeted marketing collateral, and auto-generate code for developers.

“The world is experiencing one of the most profound technological shifts with the rise of real-time technologies and generative AI.  This comes at a pivotal moment as every company is focused on connecting with their customers in more intelligent, automated, and personalized ways,” said CEO Marc Benioff.  “Einstein GPT, in combination with our Data Cloud and integrated in all of our clouds as well as Tableau, MuleSoft, and Slack, is another way we are opening the door to the AI future for all our customers, and we’ll be integrating with OpenAI at launch.”

Einstein GPT for Sales

Einstein GPT is the next generation of Salesforce’s Einstein AI capabilities.  Einstein GPT supports natural-language prompts that “trigger powerful, time-saving automations and create personalized, AI-generated content” within Salesforce.  In addition, each application maintains a human-in-the-loop that reviews and edits client communications before they are sent out.

Einstein GPT reduces “the friction in sales reps wanting to move fast to meet their quota, having to leave Salesforce to send customer communication or do prospecting research, and spending too much time finding information stored in various parts of the CRM,” wrote Salesforce Ben.

New functionality includes:

  • Einstein GPT for Sales: Auto-generate sales tasks like composing emails, scheduling meetings, and preparing for the next interaction.  It can also provide external news for prospect research, add contacts not already in Salesforce, and generate additional collaboration channels on Slack.
Einstein GPT can identify event triggers and recommend whom to contact.
  • Einstein GPT for Service: Generate knowledge articles from past case notes.  Auto-generate personalized agent chat replies to increase customer satisfaction through personalized and expedited service interactions.  Einstein GPT for Service also auto-generates case summaries and knowledge articles from past case notes.
Generating a case article.
  • Einstein GPT for Marketing: Dynamically generate personalized content to engage customers and prospects across email, mobile, web, and advertising.  The service can generate content with brand-compliant images and layouts.  Marketing content can then be uploaded to Experience Builder.
Einstein GPT for Slack writes copy with brand-compliant images and formatting.
  • Einstein GPT for Slack Customer 360 apps: Deliver AI-powered customer insights in Slack (e.g., smart summaries of sales opportunities) and surface end users’ actions.  The Slack service supports writing assistance, background research on accounts, and instant conversation summaries.
  • Einstein GPT for Developers: Improve developer productivity with Salesforce Research’s proprietary large language model by using an AI chat assistant to generate code and ask questions for languages like Apex.                                         

“Salesforce can be a powerful multiplier of generative AI experiences because Einstein GPT blends public data with CRM data, and when several million of our customers are all using Einstein GPT, the model gets refined with each instance and becomes more accurate,” explained Salesforce’s SVP of AI and Machine Learning Jayesh Govindarajan.  “It’s a cumulative effect and is really a huge differentiator for Salesforce.”

Salesforce is also looking to establish an AI ecosystem, with OpenAI as the first integration.

“Einstein GPT will infuse Salesforce’s proprietary AI models with generative AI technology from an ecosystem of partners and real-time data from the Salesforce Data Cloud, which ingests, harmonizes, and unifies all of a company’s customer data,” announced Salesforce.  “With Einstein GPT, customers can then connect that data to OpenAI’s advanced AI models out of the box or choose their own external model and use natural-language prompts directly within their Salesforce CRM to generate content that continuously adapts to changing customer information and needs in real-time.”

As part of the announcement, Salesforce established a $250 million venture fund to develop “responsible, trusted, and generative AI.”

OpenAI CEO Sam Altman said using ChatGPT in CRM services “allows us to learn more about real-world usage, which is critical to the responsible development and deployment of AI—a belief that Salesforce shares with us.”

“It will be fascinating to watch how this plays out,” opined Fortune editor David Meyer.  “On the one hand, we’re now in the territory of serious businesses using generative AI for serious things, as opposed to playing around to see how long it takes to get a chatbot to say something offensive.  On the other hand, some of these applications involve customers who may have some curveball questions.  And it’s worth remembering that generative AI technology like OpenAI’s ChatGPT will occasionally ‘hallucinate,’ that is, basically make up fake information.”

“In theory, Microsoft’s and Salesforce’s new offerings should be safer to use because they only draw on information from companies’ own websites and internal databases—the customer-facing elements will in that sense be a bit like those Google search boxes in websites,” continued Meyer.  “But that won’t necessarily make these AIs immune to occasionally emitting bogus information.  Companies will find out soon enough how carefully they need to monitor their new copilots.”

Einstein GPT is in closed pilot. 

A ChatGPT for Slack app is in beta.  The ChatGPT app was built by OpenAI on the Slack platform and “delivers instant conversation summaries, research tools, and writing assistance directly in Slack.”

ChatGPT for Slack, built by OpenAI, was released this week.

LinkedIn: Using AI Responsibly

LinkedIn posted its AI principles today. These are all high-level which is a good starting point, but implementing rules and policies requires more details.

AI is not new to LinkedIn. LinkedIn has long used AI to enhance our members’ professional experiences. While AI has enormous potential to expand access to opportunity and transform the world of work in positive ways, the use of AI comes with risks and potential for harm. Inspired by, and aligned with our parent company Microsoft’s leadership in this area, we wanted to share the Responsible AI Principles we use at LinkedIn to guide our work: 

  • Advance Economic Opportunity: People are at the center of what we do. AI is a tool to further our vision, empowering our members and augmenting their success and productivity. 
  • Uphold Trust: Our commitments to privacy, security and safety guide our use of AI. We take meaningful steps to reduce the potential risks of AI.
  • Promote Fairness and Inclusion: We work to ensure that our use of AI benefits all members fairly, without causing or amplifying unfair bias.  
  • Provide Transparency: Understanding of AI starts with transparency. We seek to explain in clear and simple ways how our use of AI impacts people. 
  • Embrace Accountability: We deploy robust AI governance, including assessing and addressing potential harms and fitness for purpose, and ensuring human oversight and accountability.
“Using AI Responsibly,” LinkedIn In the Loop Newsletter (March 2023)

As with every new technology, it can be used for either the betterment of society or malign purposes. Setting out principles helps frame product management and engineering in building their models, promoting trust, and setting guidelines to reduce negative effects (e.g., recapitulating bias, spreading misinformation and disinformation).

Transparency helps reduce negative effects as well. If it isn’t known why a recommendation was made, how can it be trusted? Furthermore, how does one know that the AI isn’t recapitulating somebody’s IP; gathering information from incorrect, malign, or outdated sources; or making incorrect assumptions? Thus, black box AI should be avoided.

Microsoft is the early leader in implementing Generative AI, a category of AI “algorithms that generates new output based on data they have been trained on” (Gartner). The best known of these is ChatGPT which generates text and carries on chat conversations. Microsoft recently invested $10 billion in OpenAI, the developer of ChatGPT and other generative AI tools. It is quickly moving to integrate it into Bing and other products.

On Monday, I will post about ChatGPT being integrated into Microsoft’s Viva Sales product.


GZ Consulting Resources

Groove Plays Announced

Groove Plays are triggered when one or multiple conditions are met.

Sales Engagement vendor Groove introduced its Plays service to the market this morning.  Groove observed that most sales engagement vendors tout flows (aka cadences and sequences) but that sequenced, linear processes fail to capture the increasingly complex nature of modern enterprise sales.  Furthermore, flows were initially designed for SDRs and appointment setting but are inadequate for meeting the broader needs of the revenue team.

Along with the introduction of Plays, Groove is shifting from sales engagement to a broader vision of “Connected Sales Execution” that unifies team, strategy, and technology.

“When my co-founder Austin and I founded Groove, we were sales leaders facing the exact challenge that Groove Plays solves,” said CEO Chris Rothstein.  “We knew that in order to digitally transform sales as a profession, we had to start by building a foundation in advanced data capture and linear-process automation.  With Groove Plays, we are introducing the next generation of Groove to solve the biggest untapped market in sales.”

Forrester recognized this transformation in its Q3 2022 Sales Engagement Platforms Wave report, noting that Groove’s activity capture and interaction management are “top-notch.”  Groove collects and aggregates signals from interactions and scores from Salesforce and external sources such as Clari, Seismic, 6sense, and Snowflake.  “This information is used to connect buying group members and make suggestions based on broad data sets.  Groove specializes in industry-specific and customer-specific suggestions and signals.”

“We’re launching Groove Plays as a way to take your playbook finally out of your head and put it into software so that you can assist reps at the right time, rather than after it’s too late,” explained Rothstein to GZ Consulting.  “And then the second huge benefit: if you can constantly see what’s being done, what’s not being done, and what’s correlated with winning, then you can evolve and constantly get better.

Plays are designed for complex, non-linear sales processes.  Sales Operations set up Groove Plays to monitor accounts for risks and opportunities.  Plays are triggered when specified conditions are met (e.g., stalled deals, single threading, missing participants by role).

Groove Plays also monitors rep activity to see whether plays contributed to positive outcomes.  Thus, sales managers and operations teams know whether sales reps follow company playbooks and which ones are effective.  Play analytics are broken into outcomes without intervention (the playbook was followed), with intervention (the playbook was followed but after a reminder), or ignored.

Furthermore, by monitoring activity, Plays prevent reps from failing to follow critical steps (e.g., sending a follow-up message after a call, quickly turning around meeting action items).

Groove Play Outcomes analyzes the efficacy of Plays

Alerts are fed to Groove’s Master Review List, which is displayed in its Chrome extension and visible across Salesforce, Groove, and email.  In addition, timers can be set to prevent plays from automatically firing, thus reducing the likelihood that reps are overwhelmed by automated triggers.

Plays provide proactive coaching instead of waiting until account reviews or forecasts.  Delayed recommendations are generally reactive instead of proactive.  “At that point, it’s too late.  And then you react way too late.  Our goal is for you to put the rules in the system, so it’s assisting you at the right time when there are signals…so you can be more proactive and consistent,” stated Rothstein.

Plays recommend actions when specific criteria are met.  For example, a play can be built for deals with negative sentiment concerning price and slowing engagement.  The play could then recommend an ROI calculator to a prospect, helping shift their thinking from cost to ROI.

Plays can also be built around handoffs, ensuring that crucial transition steps are not skipped.

Plays are also integrated into Groove’s conversational intelligence service and generative AI, providing meeting follow-up emails based on insights.  Reps can choose to regenerate the email or add snippets.

Groove suggests “ideal email content based on insights gathered from earlier in the deal process via Groove Conversations and advance activity capture.”

Plays can also be designed around deal risk, suggesting actions if key buying committee members are not engaged.  Likewise, plays can be setup if MEDDIC steps have not been completed, the primary contact has not responded to a renewal message, or internal approval timelines are not being met.

Groove’s RIO AI engine consists of three underlying engines:

  • NLP: Analyzes emails and generates insights for coaching.
  • Association: Ties actions to outcomes across the tech stack.
  • Guidance: Suggests actions based on sales plays and generates personalized content and best engagement times.

Groove supports “Connected Sales Execution” across sales, marketing, and customer success.   RIO ingests account and activity histories with feedback loops to refine plays and recommendations.  Thus, Connected Sales Execution spans teams, processes, and technology. 

“We’re a platform to help you execute your sales strategy,” argued Rothstein.  At its heart, Groove employs AI, processes, rules, and sensors (e.g., email capture, calendar capture, logging, phone calls) that analyze activities and generate insights.

“We’ve always been a company that connects all these things: the technology and the process, the team and the process,” stated Rothstein.  “Where we can help is getting everyone on the same page, executing the playbook in real-time, and seeing what’s working and [what’s] not.”

Groove Plays is in Alpha with a planned Q2 beta.  Groove Plays will be available to all customers at no additional cost when it GAs this summer.

Lavender Series A

Lavender Insights

Lavender, which markets an AI-powered sales email coaching platform, closed an $11 million Series A, raising its total funding to $13.2 million.  Norwest Venture Partners led the round with participation from Signia Venture Partners.  The funding follows strong growth in 2022, with revenue rising 865%.

Funds will be deployed towards expanding its team and introducing “new AI-powered features that help revenue teams not just understand why their messaging is falling flat but also provide actionable coaching to improve productivity and generate faster responses.”

“Lavender’s new investment helps it build out a generative AI solution at the intersection of email marketing, sales enablement, and news and information,” wrote Outsell Lead Analyst Randy Giusto.  “It shows where sales and marketing intelligence vendors must head next.”

Lavender integrates with a user’s email workflow, helping reps improve response rates.  It also delivers prospect company and contact intelligence.  Lavender scores emails and recommends steps to improve response rates.  It also “coaches sales reps on how to build meaningful relationships and close more deals.” 

Along with raising response rates, email composition time is significantly reduced.  Lavender claims that rep time writing an email drops from fifteen minutes to one while raising email response rates fourfold to twenty percent or more.

“Using Lavender is like giving every seller on the team a dedicated coach, making them more effective, more efficient, and more confident in their job,” stated CEO William Ballance.  “This funding quickly accelerates our ability to build the best email experience for sellers around the world.  Most importantly, we’re creating new jobs as our team of #EmailWizards rapidly expands.”

The Lavender Team Dashboard

Lavender recommendations are initially based on “millions of successful sales emails and your historical emails.”  However, it continues to adjust recommendations based on “what works best for you.”

Lavender evaluates the subject and body to improve open rates.  It will identify subjects that are too long, not in title case, or contain numbers and punctuation.  For the body, it looks at the length, layout, spelling, and grammar.  For example, long sentences and paragraphs are difficult to read on mobile devices, so they are discouraged.  According to Lavender, 80% of buyers are viewing emails on their phone, “so making emails easily scannable on a mobile device is imperative.”  A mobile preview window displays the email as it would appear on phones.

“We recommend things across multiple categories, including formatting, phrasing, tonality and emotional intelligence, mobile optimization, personalization, and more,” explained Lavender COO Will Allred to GZ Consulting.  “The data is always shifting though, and as trends shift in sales emails/what works well for that user and/or their team, Lavender’s scoring and recommendations dynamically adjust accordingly.”

Other Lavender features include a coaching dashboard, AI for Sales emails, and a personalization assistant.  The coaching dashboard provides individual and team email scores, open rates, reply rates, and writing time.  It helps managers determine which reps require additional coaching, what is working, and why it is working.

Lavender includes a “Start my Email” function that employs generative AI to “draft impactful outgoing email messages” based on seed bullet points from the rep or as email responses based on the email thread. 

The generative AI is OEM’d from OpenAI & Cohere.

The personalization assistant displays recipient context to assist with personalization.  For example, lavender surfaces social data, personality insights, news, events, job listings, funding announcements, and other intelligence within the composition workflow.  Lavender AI also recommends “personalized intros to tailor your email and make it relevant to the recipient.”

Lavender is integrated with Gmail, Outlook, Outreach, and Salesloft.  Lavender Anywhere, a Chrome extension, supports email composition for HubSpot, LinkedIn, Groove, Apollo, Engage, Outplay, and Mailchimp.  As Lavender Anywhere is not directly integrated with these platforms, users must cut and paste the resulting text into the communication window.  Lavender Anywhere is available with Pro and Teams licenses.

“Lavender is delivering exceptional value to our customers.  Their integration provides real-time email assistance to help Salesloft customers build and deepen their relationships with prospects through better emails,” said Salesloft VP of Global Alliances Devin Schiffman.  “We share in the mission of helping sellers be loved by the buyers they serve.”

Customers include Twilio, Sharebite, Sendoso, Segment, Lucidworks, and Clari.  Allred said Lavender sells into a “large range” of companies, “but our sweet spot tends to be mid-market tech or tech-enabled companies.”

“Lavender is marketed toward ‘sales emails’ – but many things are a sale,” continued Allred.  “Our users use Lavender for B2B sales, recruiting, customer success, marketing, and many more.”

While output is English only, features such as the email generator or summary tools can ingest foreign language input.  Thus, Lavender “works great for ESL (English second language) selling into English speaking markets,” said Allred.

“Lavender’s platform goes beyond basic AI-generated writing to augment—rather than automate—sales outreach and humanize every interaction.  It supercharges sales reps by reducing their time spent writing emails so that they can focus on building relationships and selling products,” said Scott Beechuk, partner at Norwest Venture Partners.  “We were blown away by the ‘customer love’ for Lavender’s product, which is a testament to the founding team’s deep understanding of their end user and the tight-knit community of sales leaders it has already built.  We’re excited to partner with this team on the journey ahead.”

The firm has benefited from the recent interest in generative AI and ChatGPT.  “We were using GPT-3 long before ChatGPT was a thing, but ChatGPT has definitely increased interest in Generative AI more broadly.  Users have created UGC (user-generated content) of them using Lavender to edit ChatGPT–generated emails,” explained Allred.  “But before ChatGPT was released, thousands of users were already getting the benefit of it within Lavender.”

“We view the process of emailing as four parts: research, creation, editing, and learning,” continued Allred.  Lavender assists in all four.  Generative models can assist along the way to streamline things for our users.”

Lavender employs a freemium pricing model.

Lavender is sold on a freemium basis.  Free users receive email analysis and personalization for five emails per month. 

Reps can license an Individual Pro license for $29 per month that provides unlimited emails and recommendations.  In addition, the Pro service includes Lavender Anywhere, multi-inbox support, analytics, and Gmail and Outlook 365 integrations.

For $49 per user per month, companies can license a Team edition that includes Team AI coaching, Team Insights, a Manager’s Dashboard, and SEP integrations for Salesloft or Outreach. Lavender offers a seven-day free trial and free premium licenses for job seekers, students, and bootstrapped entrepreneurs.

Attention Closes on $3.1M Round

Attention, an AI-powered sales assistant, exited stealth mode and closed a $3.1 million seed round led by Eniac Ventures.  Other participants include Frst, Liquid2 Ventures, Maschmeyer Group Ventures, Ride Ventures, and the founders of Ramp, Level AI, Truework, CBInsights, and Zoi.  The new funds will be deployed towards advanced AI capabilities and market growth for the New York City-based startup.

Attention helps sales teams “overcome inefficiencies at every stage of the sales cycle,” including CRM hygiene, sales acceleration, and revenue growth.  Attention accelerates sales rep ramp-up, drafts follow-up emails based on customer statements, improves forecasting, and automatically enriches Salesforce and HubSpot with post-call deal intelligence. 

Attention maps discussions to custom CRM fields specific to standard sales methodologies such as MEDDIC and BANT.

Attention Battlecards

Attention also provides real-time suggestions and question responses, “resulting in all sales representatives having higher rates of success and closed business.”  Recommendations include product responses to technical questions and objections handling.  The Attention AI determines common unsupported questions and builds battlecards based on sales responses.  Battlecards can also be developed or edited by the sales enablement team.

One novel feature is the ability to query the meeting transcript with a question, allowing reps to summarize or revisit the discussion around key topics quickly.

Sales reps can share call snippets with managers or SMEs via Slack, allowing them to forward open questions in the voice of the customer.

“Attention is a game-changer.  We’ve rarely seen any product like this in terms of efficiency gains and ramp-up acceleration.  We’re also blown away by how fast they’ve been releasing new capabilities.” said Peter Santis, head of sales at RocketChat.  Santis both licensed the service for RocketChat and participated in the seed round.

Founders Anis Bennaceur and Matthias Wickenburg founded competing AI software startups before joining forces in September 2021 to build Attention.

“We’re thrilled to partner with Anis and Matthias as they leverage the latest developments in AI generation and natural language understanding to superpower sales organizations,” remarked Hadley Harris from Eniac Ventures.  “We love working with repeat founders and couldn’t be happier with the strong pull they’re already getting from the market.”

Attention supports communications platforms, including Gmail, Outlook, Slack, Teams, Meets, Zoom, and Zapier.

Attention’s initial customers are in the technology sales space, most commonly with 50 to 100 licensed sales reps.

Salesloft Product Management SVP Frank Dale on Ethical AI

Frank Dale, SVP of Product Management, Salesloft

Happy New Year.  While off on vacation last week, I published an interview with Salesloft SVP of Product Management Frank Dale concerning Ethical AI.  He joined Salesloft in November 2019 when Costello, the opportunity management firm he founded, was acquired by Salesloft.  He has served as either CEO or COO at several investor-backed software companies, including Compendium, which Oracle acquired.

Dale earned a BA and MA from Valparaiso University with a concentration in ethics.  He also received an MBA from the Kelley School of Business at Indiana University.

What experience have you had developing AI tools?

As the SVP of Product Management at Salesloft, I am working with our team to bring Rhythm, Salesloft’s AI-powered signal-to-action engine platform, to life.  Rhythm ingests every signal from the Salesloft platform as well as signals from partner solutions via APIs, ranks and prioritizes those signals, and then produces a prioritized list of actions.  The action list gives sellers a clear, prioritized list of actions that will be the most impactful each day, along with an expected outcome prediction.  In addition to simplifying a seller’s day-to-day, it helps them build their skills by providing the context about why each action matters.

AI is becoming increasingly important in RevTech, with many of our interactions being mediated by AI.  Where do you see AI having the biggest impact on Sales reps between now and 2025?

AI will enable significant improvements in both seller efficiency and effectiveness.  The most obvious impact will continue to be automating away low-value, repetitive work.  What will surprise people will be the rapid advance and adoption of AI to suggest next best actions to take and content to use in those interactions with buyers.  A typical workday for a seller will see them greeted by a recommended list of actions to take each day.  Each action will be prioritized based on where the seller sits in relation to their targets, with each action accompanied by suggested content where appropriate.  For instance, I might see a suggestion to respond to an email from a champion in an in-flight deal.  The recommendation will include suggested text for the response as well as a resource to attach to the email.  That’s a future we are actively investing in at Salesloft, which is at the heart of our soon-to-be-released Rhythm product.

Same question, but looking further out to 2030…

As AI becomes more commonly deployed across the sales profession, buyers will experience a more consistent sales experience in each buyer-seller interaction.  As this becomes more common, it’s going to raise the bar on what buyers expect from a sales experience today.  That will put more pressure on sales teams to deliver consistently in ways that today may seem unreasonable but will be possible with AI assistance.

One of the key ways to raise the seller performance bar will be high-impact, tailored coaching.  Manager time is a constrained resource, and seller coaching augmented by AI provides a path to realizing performance improvement without manager time constraints.  We should fully expect AI to help coach sellers to hit their goals based on each seller’s unique profile.  We can expect AI to evaluate the seller’s entire game (activities, conversations, and deal management) to identify the highest leverage areas each individual seller should focus on to improve.  Some of the coaching will be provided by AI at the point of execution, like on a call or when writing an email, with the rest provided throughout the workday as recommendations.

What are the most significant risks of deploying AI broadly across the Sales Function?

Two areas come to mind.  First, AI used without clear boundaries in a sales process can lead to problems.  If you employ AI and automation capabilities, it should be to allow the user to be better armed to make a decision, not make it for them.  AI tools should not replace the human touch but rather augment it.  There’s a lot of pseudo-science tossed up around the topic of AI, but ultimately, humans understand the nuance of relationships better than machines.  One of the ways to address that concern is to deliver models that not only provide a recommendation but can provide the insights that led to it; humans will better trust the model when making decisions based on those recommendations as well as know when to ignore the recommendation.

Second, there’s a privacy component as well.  Companies may create AI models that share data about a particular buyer with other companies’ sales teams without said buyer’s knowledge.  The buyer may know they shared their data with one company but have no idea that multiple other customers at this company are using that same data.  Creating models with this type of function puts companies and sales teams in a high-risk zone that can tread on the unethical.  It isn’t clear that building models in that way may be considered legal in the future.  If you plan to deploy AI in a sales org, it’s important to understand how data is collected and used.      

AI Models are only as good as the underlying training data.  How concerned are you about biased models recapitulating discrimination?  For example, emphasizing sales skills that are gender or racially biased when evaluating sales rep performance?

It is a legitimate concern.  AI products are based on probabilities, not certainties.  The recommendations you receive or workflow automations that fire happen based on the probability that the given recommendation or action is right.  Not the certainty that it is right.  In a good product, the model is correct more often than a human would be when faced with the same decisions.  At times, this is because the model can evaluate a larger set of factors, and in some cases, it is simply that machines can apply rulesets at a higher level of consistency than humans.

One of the key determinants of the AI model’s value is the dataset upon which it was trained.  If the dataset does not properly represent the real world, the model will produce results that are either biased or provide poor recommendations.  We’ve already seen several examples of that with image editing software that didn’t include black-skinned people in the training dataset.  This led to either poor outcomes or worse dehumanizing results when the AI product was used in the real world.  If you plan to deploy AI in your business, you should ask the provider what precautions they take to prevent bias in their models.  We are very intentional about removing factors that could lead to bias in our training datasets.  Still, it isn’t something I see most technology companies paying attention to in the revenue tech space.

How do you curb racial and gender bias when performing sentiment analysis?

We take great care at Salesloft to remove things that would lead to discriminatory factors.  For example, for our Email Sentiment model, one of the ways we prevent bias is by removing all mentions of people’s names within the email because that could provide clues to their gender, race, or ethnicity.  We do that kind of preprocessing with any data we use in an AI model before we build our models.

One of our assets is our scale.  We’re fortunate that we operate globally and are the only provider in our space with offices in the Americas, Europe, and APAC.  As a result, we work with organizations of all sizes globally, including many of the world’s largest companies.  That means when we build models, we have one of the largest datasets in the world for sales execution.  This enables us to train models based on datasets with both breadth and depth.  When we build a model, it is easier to train it in a way that fairly represents reality and includes safeguards to avoid racial or gender bias.

AI will increasingly be deployed for recommending coaching and mediating the coaching.  What concerns do you have about replicating bias when coaching?

As with any AI product making a recommendation, the potential to make a recommendation with bias is a concern that needs to be addressed when building models.

We take our responsibility to avoid bias in any product we release very seriously.  The revenue technology industry as a whole hasn’t demonstrated a similar commitment to avoid harmful bias as of yet.  I don’t hear other companies talking about proactive steps to avoid it, but I think that will change.  We’re monitoring potential governmental action in both the US and EU that will require companies to raise their standard in this area.  It is only a matter of time before laws are passed that require companies to prevent unlawful bias in their AI products.

Sales activities are becoming increasingly digitized, a boon for revenue intelligence, training, and next best actions.  What guardrails do we need to put in place to ensure that employee monitoring does not become overly intrusive and invade privacy?

Let’s start by recognizing it is reasonable for an employer to have insight into what work is getting done and how it’s getting done.  On the other hand, getting a minute-by-minute record of how each seller spends their day is unreasonable, as is dictating every action the seller takes from morning until nightfall.

We have to start with the right first principles.  I think we can all agree that humans have inherent worth and dignity.  They don’t lose that when they go to work.  The challenge is that we have some companies in the technology industry that forget that fact when developing solutions.  When you forget that fact, I believe that you actually harm the customer that you’re trying to serve.  That harm happens in two ways.

First, you lose the opportunity to realize the true potential of AI, which is to serve as a partner that enables humans to do what they do best…which is to engage with and relate to other humans.  AI should not be used to make final decisions for humans or to dictate how they spend every minute of their day.  Good AI solutions should be thought partners and assistants to humans.  It’s Jarvis to Tony Stark’s Iron Man.

The second way overly intrusive technology harms companies that employ it is via employee turnover.  It’s no secret that industries that offer low autonomy to employees suffer from high turnover.  Most humans fundamentally desire a base level of autonomy; if that’s threatened, they leave whenever a good option opens up.

In short, if the seller is working for the technology instead of the inverse relationship, we’re on the wrong path.

In 2018, Salesforce CEO Marc Benioff argued that the best idea is no longer the most important value in technology.  Instead, trust must be the top value at tech companies.  How does trust play into ethical applications and AI?

We get to build the future we want to realize.  We can either build a future that perpetuates the things we don’t like about today’s world, or we can build a future that elevates human potential.  AI can be used to take us in either direction.  That means what we choose to build with AI and how we build it should be a very value-driven decision.

We can absolutely build highly effective AI-powered solutions that elevate the people who use them and deliver tremendous business value.  The people that believe otherwise simply lack the imagination and skill to do it.

What I love about our team at Salesloft is that we exist to elevate the ability of the people we serve and to enable them to be more honestly respected by the buyers they serve.  In sales and life, the way you win matters.  It matters to the people you serve on your revenue team, and it matters to your customers.

An emerging category of AI called Generative AI constructs content (e.g., images, presentations, emails, videos).  It was just named a disruptive sales technology by Gartner.  They stated that “By 2025, 30% of outbound messages from large organizations will be synthetically generated.”  What risks do you see from this technology?

There are two immediate risks that come to mind.  First, the messages need to be reviewed by a human before they are sent.  The technology has made extraordinary leaps forward.  I’ve spent a fair amount of time playing around with some of the tools released by OpenAI and others.  The output is impressive and also, at times, very wrong.  This goes back to the fact that the output is based on a probability that the answer provided is correct.  You can get a very professional, persuasive email, or you can get something that approximates a professional email but won’t land well with your intended customer.

Second, it has the potential to make every outbound message sound the same.  Generative AI doesn’t replace the need for human skill.  It changes the areas of focus for that skill.  Specifically, the opportunity for humans is to use Generative AI to help generate a higher volume and variety of ideas and then to edit and refine the output.  The returns available to creativity are always high, but they become even higher when everyone is doing the exact same thing in the same way. 

Having said that, I see tremendous potential in the technology and think if used properly it will be very valuable to revenue professionals.

SalesLoft CEO Kyle Porter has long emphasized authenticity and personalization in sales conversations.  Do you see Generative AI potentially undermining trust?

Kyle is absolutely right.  At the end of the day, a sale happens when a seller connects with a buyer to help them solve a problem.  You can’t do that without authentic connection and trust.  Generative AI should not replace that human connection, and I don’t think buyers want it to replace human connection.  A close friend of mine was a sales leader at a now-public PLG-driven SaaS company.  They added sales reluctantly.  When they did, the company learned that buyers both bought more from them and were happier customers.  That company now wishes it had added sales much earlier. How we interact with one another can evolve as technology evolves, but it doesn’t change the fact that humans are wired to connect with each other.  I think emerging tools like Generative AI will help us be more productive, but they won’t replace the need for authentic human connection and trust.


Resources:

Microsoft Viva Sales

Microsoft announced Viva Sales, “a new seller experience application that brings together any customer relationship management technology (CRM), Microsoft 365, and Teams to provide a more streamlined and AI-powered selling experience.”  The new solution is designed for the hybrid work environment where reps leverage video conferences, chats, emails, and documents to close deals.  Viva Sales will also support Salesforce at launch.

Viva Sales “represents a new way of working by breaking down silos of data and breaking down silos of experience,” explained Microsoft Corporate VP for Business Applications Emily He.  Sales reps “really want a more simplified experience.  So, Viva Sales enables a seller to use the tools they already love and use every day, including your email system like Outlook, Word documents, PowerPoint presentations, as well as Teams,” she said.

Unfortunately, reps manage these disparate communications channels and their CRM to organize administrative tasks, collaborate on sales, and attend virtual sales meetings.  “Yet, all sellers really want is to spend more time with their customers,” stated Microsoft Chief Commercial Officer Judson Althoff.

Continued Althoff, “What if everything a salesperson needed to do their job was brought together in one place – where they already spend most of their day – in calls, meetings, and chats?  What if their customer records, data, and tasks were intelligently organized and accessible in the tools they use every day?  What if the collaboration environment sellers use to talk to customers automatically provides the next best action and sentiment analysis?”

Viva Sales is a “new modern way of selling” that operates as a “smart CRM companion” that simplifies the seller’s workflows and enriches the CRM.  Viva Sales captures AI-driven insights from Outlook, Teams, and Microsoft Office and feeds this information to the CRM.

“Viva Sales empowers sellers to be more connected with their customers, resulting in more personalized customer engagements and closed deals faster,” stated Althoff.  “This happens through a simple customer tagging feature, which automates the data capture, saves the seller time, and provides their organization with a more complete picture of deal and customer status.  With AI embedded throughout, Viva Sales is like a sales coach to move deals along with recommendations and reminders.  This intelligence layer provides sellers the information they need to help them be more productive.”

Viva was launched last year as an employee portal, but Sales is the first functionally-specific edition of the service.  Viva Sales will be in public preview in July and generally available this fall.  Microsoft Dynamics Sales is inclusive of Viva Sales and “addresses both sellers’ and sales leaders’ needs by automatically enriching Dynamics 365 Sales with customer engagement data captured in Office 365 and Teams.”

Once an email is tagged to an account, Viva Sales presents a sidebar with CRM intelligence. Customer interactions are then logged to the CRM.

Sales reps tag customers or prospects in a Microsoft application.  This “tag to capture” functionality alerts Viva to begin capturing account intelligence and offering insights to the sales rep.  Viva Sales employs Microsoft’s recently announced Context IQ for capturing relevant content across Microsoft apps and services.  This data can then be synced with any CRM.

“What we are focused on is removing the drudgery of manually entering the data into a CRM and then providing the AI capabilities for the sellers,” explained Product Marketing Senior Director Neha Bajwa.  “There’s a virtual personal assistant that is sitting and helping them out doing all the busywork that we would normally have to do.”

The objective is to solve the problem of manual data entry without destroying the CRM.  Viva runs alongside the CRM, capturing intelligence from other enterprise sales apps commonly deployed across sales teams.  The data capture and CRM syncing improve rep productivity while the AI suggestions improve sales effectiveness through better recommendations, reminders, and Next Best actions.

“As you work with a customer, you can not only see your own interactions, [but] you can also see across your company and find all the people that are interacting with your client as well,” said Microsoft VP for Modern Work Jared Spataro.  “We’re trying to apply AI not only to remove the boring stuff, but also to provide real value add so that you can cope with the volume and the expectations associated with you doing your job.”

The service recommends next steps, displays complete interaction histories, and pushes reminders to reps.  It is also connected to LinkedIn, providing the names of colleagues with strong connections to a contact or account, allowing sales reps to conduct research before a Teams chat.

Viva Sales recommends colleagues with pre-existing relationships for pre-meeting briefings via Teams Chat.

During a Teams call, reps can view the relevant customer information in a sidebar and access meeting prep notes.  After the call is recorded and transcribed, Viva Sales summarizes the call and captures action items.  Conversation KPIs and talk tracks are also generated.

Another feature is the generation of customer lists with recent activity, sentiment graphs, and engagement within Excel.

Customer lists within Excel are enriched by Viva Sales. A sidebar provides contact-specific insights, including colleague connections and meeting summaries.

“The future of selling isn’t a new system.  It’s bringing the information sellers need at the right time, the right context, into the tools they know, so their work experience can be streamlined,” said Althoff.  “Empowering sellers to spend more time with their customers has been our goal — and we’ve done that by reimagining the selling experience with Viva Sales.”

One of the core issues at the heart of CRM implementations is the reliance on manual data entry, argued Paul Greenberg, Managing Principal at The 56 Group.  What is necessary is ongoing automation to remove this busy work.

“Sellers rely on digital collaboration and productivity tools to connect with customers and close deals, but a lot of the insights they uncover with these tools don’t make it into the CRM,” Greenberg.  “Microsoft is taking on this challenge by offering a solution that complements the CRM.  Viva Sales automates the busy work, captures critical information about the customer, and helps sellers get the job done.”

Outreach Guide

Outreach announced the general availability of Outreach Guide, its new revenue intelligence and deal management solution.  Guide provides real-time conversation intelligence, best practice action plans, and “deal health at a glance.”  Outreach also announced administrative enhancements to its Engage product and a “deep integration” with ABX Platform 6sense.

Outreach Guide, Engage, and Commit act as the “foundation” of Outreach’s sales execution platform, supporting revenue organizations across the full customer sales cycle “from prospecting for new business opportunities to deal management to sales forecasting.”

Outreach’s Customer Lifecycle loop.

Outreach aims to create a “single system of execution” that helps revenue organizations meet their full potential and address issues with prospecting, deal management, and forecasting.

To help address this “sales execution gap,” Machine learning models “learn from the actions taken in our platform and generate data-driven, predictive, real-time insights that recommend actions for users to take to improve their sales execution,” said CEO Manny Medina.

Outreach Guide supports three core capabilities:

  • Deal Health Scores: The Deal Health Score employs machine learning to predict deal health.  It also provides deal insights, recommended actions, and where to focus.  In addition, deal Health displays positive and negative indicators (e.g., stuck in current stage, no recent inbound emails, recent executive engagement). 

    Deal Health signals deals at risk to both the sales rep and sales management, providing an opportunity to address problems and adjust forecasts.

    Deal Health scores can be viewed in the aggregate as well, providing a neutral perspective on how each deal is proceeding versus comparable opportunities.

    Deal Health scores are currently in beta.
  • Kaia Real-time assistance and conversation intelligence: Kaia offers real-time call transcription, content cards, and context-based rep enablement during Zoom and Microsoft teams meetings.  After meetings, Kaia streamlines meeting summaries with AI-captured action items and follow-ups.  As a result, Outreach claims rep productivity increases by nearly 30%, and the likelihood of scheduling a follow-up meeting jumps by 36%.

    Kaia is linguistically customized for each client, capturing product names and competitors as keywords.  During a call, content cards display real-time sales aides, such as product summaries or technical notes.  Content cards provide quick cheat sheets on product value, pricing, or integrations (see the example on the right).

    By removing notetaking and displaying content cards, Kaia allows sales reps to be more present during calls and pitch with greater confidence;  instead of pausing a meeting to jot down notes, sales reps can quickly add a bookmark or short meeting note.
  • Automated and collaborative purchasing through Success Plans: Success Plans foster collaboration between buyers and sellers with detailed online purchase action plans that include a timeline, success criteria, resources, and team views.  Collaborative action plans align stakeholders, build buyer trust, ensure timely stakeholder engagement, and provide internal stakeholders with prospect engagement and deal progress.  Outreach claims that reps who closely monitor Success Plans enjoy a 13% bump in close rates.

“The buying team has all the information related to the deal in a central place, and all teams are aligned to clearly understand each other’s goals, interactions, and requirements essential for driving long-term success, delivering an unparalleled buying experience throughout the entire selling process,” stated Director of Product Marketing Elizabeth Dailing.

Furthermore, Success Plans are available to Customer Success teams when onboarding new customers, helping streamline handoffs.

The Team view helps track who is involved from the buying team and how engaged they are, how recently they were engaged, and what content they viewed.

Outreach Guide is designed to address the “Sales Execution Gap.”

Outreach also announced a set of administrative and data privacy enhancements to its Engage service:

  1. Trigger Enhancements – A streamlined trigger builder improves the creation, management, and discovery of triggers.  The refreshed trigger builder is aligned with traditional CRM language and supports multiple values per condition, drag-and-drop action reordering, and simplified condition group creation.
  2. New Outlook-Add In – A native integration lets reps ‘Send’ emails from Outlook and send and sync “relevant emails to Outreach, as well as insert their available times or add a link to their calendar.”  Outreach will also flag opted-out communications in Outlook and prevent them from being sent or added to a sequence.
  3. Microsoft Graph Integration
  4. Data Retention in Outreach Voice Recordings – Admins can configure data retention policies such as deleting data as a one-time event or setting up regular data deletions for Outreach Voice Recordings.

Additionally, Outreach announced an Irish Datacenter for Outreach Engage, meeting EU data residency requirements for GDPR compliance. “The EU Datacenter for Outreach Engage allows an organization’s data to be stored in a specific geographic location,” blogged Caroline Shin, Senior Product Marketing Manager at Outreach.  “This means customer-owned data associated with those Outreach instances including prospects, accounts, organizations, and workflow data such as sequences and meetings will be stored and contained within the EU infrastructure.”