Your Biggest Competitor is No Decision

Back when I was a product manager, I used to conduct sales training classes.  I often opened up the session by asking the question, “Who is your biggest competitor?”  The reps invariably listed a company or two they had heard over the prior day and a half of training.  Even seasoned reps would answer the question incorrectly.

Unless you are in a duopoly or there is a competitor that controls half the market, your biggest competitor is probably NO DECISION.  Either the purchasing decision is kicked down the road or no funding is found.  It may also be that the opportunity was poorly qualified to begin with.

Sales reps no longer control the conversation due to the informed buyer who leverages the Internet and social media in order to research vendors prior to contacting them.  This is one of the reasons that marketing is looking at digitally influencing anonymous individual on the web via Visitor ID, SEO, SEM, and Programmatic.  Sales reps are also confounded in their sales efforts by a second change in purchasing patterns.  B2B budgetary decision making processes have become more complex.

Budgetary centralization and committee-based buying decisions have increased the number of decision makers in the purchasing process, resulting in a greater likelihood of no decision.  According to a Forrester survey of IT sales reps, 43% of lost deals weren’t to competitors but to a category titled “lost funding or lost to no decision: customer stopped the procurement process.”

Furthermore, the rise of cloud computing has shifted budgetary decision making authority away from the CIO to the heads of various functional departments.  Purchasing decisions are being compared to a broader set of non-related purchases from across the organization.  It is therefore critical that sales reps “understand and navigate complex agreement networks and processes within the buying organization that span different altitudes and functional roles,” blogged Forrester Sales Enablement Analyst Mark Lindwall.  “Because decisions are more cross-functional, every dollar is compared against how it could add value in potentially completely non-related areas of investment.”

Thus, sales reps need better tools for identifying who to engage and when best to engage.  They also need to be better informed about companies, individuals, and the industries into which they sell.  In short, they need to know who to call, when to call, and what to say.  They need to quickly navigate what Forrester calls agreement networks to establish relationships across multiple levels and job functions at the organization.

Fortunately, Sales 2.1 tools provide rich biographies and full family trees for navigating these networks.  Users can target specific job functions and levels across the corporate hierarchy, research the appropriate individuals, and reach out to them via social media, email, or phone.

Newer ABM tools help identify the Ideal Customer Profile (ICP), score leads based on the ICP, and call out similar accounts and contacts that are not on the company’s radar.  Thus, it’s not just about selling more intelligently based on insights, but targeting and prioritizing one’s sales efforts more effectively.

Sales triggers assist with identifying executive changes, M&A events, product launches, and other reasons for reaching out to individuals.  Triggers can also indicate an expanding opportunity or that a proposal is potentially at risk due to company or market dynamics.

And yes, sales reps should research both the company and the executive.  They need to understand the key trends in the prospect’s industry, why their last quarter was soft, and what does the executive muse about on social media.  While such facts may not be immediate hooks, they provide context and potential talking points down the road.  It also shows that the rep is willing to invest time in understanding the exec, her company, and the environment in which she is making decisions.

There is an opportunity cost to poor targeting, prioritization, and account planning. It shows up as No Decision in your CRM, slow deal velocity in your pipeline metrics, and disappointing sales growth.

DiscoverOrg AccountView ICP Tool

Intelligence vendor DiscoverOrg announced a new Account Based Marketing (ABM) tool called AccountView which helps marketers identify the attributes of their Ideal Customer Profile (ICP).  The new feature analyzes an account file which it calls a portfolio, enriches it with firmographics and technographics, and then provides a portfolio visualization dashboard of the accounts.  The service also identifies similar companies to the top accounts, prioritizes them, and identifies best fit decision-makers at the net-new accounts.

The AccountView Dashboard provides firmographic and technographic segmentation analysis.
The AccountView Dashboard provides firmographic and technographic segmentation analysis.

The portfolio segmentation dashboard tiles include

  • Size: Revenue and Employee Bar Charts
  • Industry: Primary Industry Pie Chart; SIC and NAICS top frequency lists
  • Technology: Technology lists
  • Ownership: Ownership Structure Pie Chart
  • Companies: Portfolio companies with employee and revenue data.  Company names are hyperlinked to their DiscoverOrg profiles.

Although geographic segmentation is not yet available, it is on the product roadmap.

Within the list tiles, users can search for specific elements (i.e. SIC, NAICS, technology, or company name).

Proposed contacts are shown within org charts with direct dial phones and emails to assist with organizational context and reach out.  DiscoverOrg also provides detailed platform information and a set of sales triggers.

Marketing and sales teams can drill into specific bars or wedges to further research segments.  To quickly refine models, customers can remove outliers to focus the ICP around high frequency variables.

Company Lists include DealPredict Scores and Lightning Bolt Alert Flags.
Company Lists include DealPredict Scores and Lightning Bolt Alert Flags.

Portfolios may be uploaded as CSV files, bulk matched within DiscoverOrg, or generated via DiscoverOrg prospecting.  Result lists may be saved as lists, viewed as searches, or exported to CSV files.  Models may also be loaded into DealPredict where company lists are displayed with Deal Predict scores of zero to five stars.  Next to DealPredict scores, DiscoverOrg displays a lightning bolt icon if the company has a Sales Trigger or OppAlerts in the past sixty days.  OppAlerts are intent based triggers which have been researched by DiscoverOrg editors or gathered through B2B publishers’ online content consumption data.  By clicking on the lightning bolt, reps are shown the related events.

Within DealPredict, company lists are dynamically maintained to reflect the current firmographic and technographic lists of companies.  If there is a change in company size or implemented technology, the DealPredict scores are automatically updated every time a search is conducted.  Likewise, companies which are added to the DiscoverOrg database are automatically scored.

The very foundation of successful sales and marketing is figuring out who your best customers are, understanding why they are the best, and finding more prospects just like them.  What could be a painful analytical exercise is made simple and straightforward with DiscoverOrg’s account-based marketing features, and the result is faster growth for customers who can more effectively identify, understand, and engage with their ideal buyer.

  • DiscoverOrg CEO Henry Schuck

DiscoverOrg suggests a number of account list categories that can be analyzed including the full customer list, high or low spend customers, renewing or non-renewing customers, high or low profitability customers, competitor customer lists, and prospect accounts.  For example, running a competitor’s customer profile through AccountView helps you “determine ways to improve your product, messaging, or positioning.  Likewise, running the non-renewed customer list through AccountView will help identify high-churn candidates for special programs.

Although DiscoverOrg recommends sets of strong and weak account lists, AccountView does not have the ability to discriminate between the two categories.  Thus, marketers would need to separately run the paired lists, compare the portfolio results, and adjust the models for overlapping variables.  For example, knowing that Microsoft Office is heavily used by both strong and weak accounts would indicate that MS Office is a frequently occurring, but non-predictive variable.

Future features include support for multiple models, grouping tech functions by category, sharing models across all users, geographic segmentation reports, and uploading contact information to assist with defining job functions and levels.

AccountView is the latest capability within DiscoverOrg’s ABM Toolkit.  Other features include DiscoverOrg’s DealPredict predictive rankings for companies and contacts, OppAlerts intent-based opportunities, and sales triggers.

DealPredict provides predictive scores similar to those provided by predictive analytics companies.  DiscoverOrg CMO Katie Bullard noted that unlike some black-box predictive platforms, AccountView analysis and DealPredict models are fully visible to sales and marketing users.

The AccountView analytics and net-new account service is included as part of the DiscoverOrg service.  Firms license access to specific DiscoverOrg datasets and a set number of seats.  Licensed users then have unlimited access to the licensed content for viewing, uploading, or downloading.

Other sales intelligence companies that have developed AccountView-like functionality include Dun & Bradstreet (Workbench), Avention (DataVision), and Zoominfo (Growth Acceleration Platform).

DiscoverOrg, which hit $71 million in Annual Recurring Revenue (ARR) at the end of 2016, has expanded its customer base beyond technology companies.  Over 15% of revenues now come from marketing agencies, staffing firms, and consultancies.

DiscoverOrg is one of fourteen vendors covered in my “2017 Field Guide to Sales Intelligence Vendors“.

Data Enrichment Assists Digital Transformation

Blog on the Sparklane UK website discussing how sales and marketing can prepare for Digital Transformation.
Sparklane Blog

In a blog on Sparklane’s website, I had the opportunity to discuss how sales and marketing can digitally transform their departments by focusing on data enrichment and sales intelligence.

Firms have traditionally taken a haphazard approach to data quality, failing to recognize that data quality is a function of both initial data (keyed data, web forms, trade show scans, purchased lists, etc.) and time.  Data is dynamic.  It can be accurate today and inaccurate tomorrow.  That’s why data quality is often broken down into three dimensions: Accuracy, Completeness, and Timeliness.

So not only are firms failing to enrich data in real-time as data is acquired (or batch if purchased), they are ignoring the simple fact that

  • Companies relocate
  • Offices are shuttered
  • Execs change companies or positions within companies
  • Corporate URLs and email domains are changed when companies are acquired or renamed
  • Companies grow and shrink

The result has been saw-tooth data quality charts with quality spiking at data refresh and then quickly declining.  Both company and contact data are subject to data decay with contact data declining at a rate of 25% per annum (A recent Radius study has it at 27%).

To address this problem, firms should evaluate third-party solutions which provide a reference database matched against their sales and marketing datasets.  By standardizing on a reference dataset, sales and marketing operations can deploy a single source of truth across data acquisition (e.g. list loads, prospecting, web forms) and maintenance (ongoing updates to their CRM and Marketing Automation platforms).

There are many benefits to this approach:

  • Web Form and other keyed data is immediately verified and graded.
  • Lead Scoring is based upon richer and more accurate data.
  • Duplicates are detected before being created, allowing leads to be matched to current customers and prospects.
  • Leads from subsidiaries and branches are tied to ABM accounts, ensuring they are properly scored and routed.
  • Addresses, Phones, and other key firmographic and biographic fields are standardized ensuring they are properly segmented, targeted, and routed.
  • Sales and Marketing no longer waste resources targeting individuals who have left an organization.
  • Sales has more complete data for lead qualification, prioritization, and messaging.
  • Higher quality data is propagated to downstream systems, reducing the long-term cost of maintaining those platforms and helping prevent downstream errors and duplicates created by low quality upstream data.

And those benefits are simply those from cleaner data.  That is before we begin to consider the value of sales intelligence platforms in account planning, messaging, current awareness, identifying additional contacts at current accounts and prospects, and opportunity prioritization.

So if you want to begin to improve enterprise decision making and efficiency, an excellent place to start is in improving the data which is the lifeblood of your digital platforms.

Sales and Marketing Alignment

In a research study titled, “2016 B2B Sales & Marketing Collaboration Study,” Samantha Stone and The Marketing Advisory Network found that the misalignment of sales and marketing objectives remains a key problem for B2B companies.  Although this has been a topic of discussion for several years now, misalignment remains a key stumbling block to meeting revenue objectives.  Finger pointing between sales and marketing has long been a blogging meme.

When asked about whether marketing co-workers were doing a “superb job of supporting sales efforts,” sixty percent of marketers agreed while only twenty percent of sales executives agreed.

Other signs of disconnection between the two parties:

  • Only twenty percent of marketers believe that there is a 95% follow up on marketing generated leads while only half of sales executives believe a 95% follow up rate is maintained within their department.  Overall, 57% of respondents believe that no more than 85% of marketing leads are acted upon by sales.
  • Marketers have little confidence that sales reps are using the tools they develop for sales.  While only 15% of marketers believe their tools are broadly adopted (“virtually 100%”), over half of sales reps believe the tools are being fully deployed.
  • While fewer than twenty percent of marketers believe that sales is rewarded for supporting marketing objectives, 55% of sales teams believe their rewards are aligned with marketing.
  • Firms that did not share key performance indicators between sales and marketing were half as likely to exceed revenue targets.
  • Marketing ownership of pipeline acceleration is critical to meeting revenue targets.  “Organizations that exceeded revenue goals in the last 12 months are 3X as likely as those that miss revenue goals for marketing to “own” pipeline acceleration (not just lead generation),” said Stone.

“It’s common sense that organizations that rally together around shared goals will drive more efficiency than those where different functions are at odds with each other. Yet, most sales and marketing teams struggle with achieving this ideal.  That’s almost terrifying given we know fully integrated companies are more profitable, drive faster growth and make happier customers,” said Stone.  “Sales and marketing leaders are smart, yet almost every organization I walk into has some level of unhealthy tension between the two groups. It doesn’t seem to matter the size of the company, the industry they serve or how fast they are growing. In fact, it’s so common we accept it as inevitable.”

Sales and Marketing SLAs (Source: Marketing Advisory Network)
Sales and Marketing SLAs (Source: Marketing Advisory Network)

The study also found that setting Service Level Agreements (SLAs) between sales and marketing are highly correlated with revenue performance.  Firms that took simple steps such as defining lead scoring criteria and lead follow up timeframes were much more likely to exceed goals than fail to do so.  Of the six SLA goal categories defined by Stone, five were associated with “exceeded revenue goals” more commonly than missing revenue goals by more than ten percent.

The one goal that was not associated with outperformance, agreeing on the “number of new contacts added to the database by sales,” doesn’t address the mix of marketing and sales generated leads.  If we assume that there is an optimal percentage of sales generated leads, then agreeing on a percentage that is significantly above or below the target would be sub-optimal.  Absent a way to determine this optimal mix, setting an SLA on sales generated contacts could easily result in too much or too little time spent on contact identification.  If the number is too high, then reps are likely to add contacts of little value to the CRM so as to reach numeric targets.  A smart SLA would be based upon an analysis of the cost of generating sales contact records against the benefit of adding additional contacts.  As such, setting an analytics-free numeric target is no better than having no SLA at all and allowing each rep to determine their optimal contact discovery level.

Teams that perform best, document more service level agreements between sales and marketing than those teams that simply meet or miss revenue goals,” said Stone.  “Those that exceed revenue goals even collect data points such as win/loss data in a formalized manner.  Perhaps the most simple practice they follow is not only agreeing on lead scoring critical for sales follow up, but on time from lead assignment to follow up. It’s this closed loop accountability that clearly makes a difference.”

Finally, one simple step for improving revenue is for marketing to attend sales meetings.  The study found that B2B organizations which outperform on revenue are twice as likely to have marketers attend customer and prospect meetings than firms that fail to meet revenue targets.  Furthermore, marketing departments should be surveying the sales team on tools.  Stone found that firms “that exceed revenue goals are 3.1X as likely as those that just meet revenue goals to survey buyers when evaluating sales tools and 14X as likely as those that miss revenue goals.”

Tibor Shanto, Principal of Renbor Sales Solutions, calls for improved cooperation between sales and marketing under the leadership of a Chief Revenue Officer:

I have always seen sales and marketing as being on a shared mission and fighting the same battle. Like the military, to succeed, marketing has to provide air cover for the ground troops, namely sales, and this requires complete coordination, planning, execution, and review. This needs to extend from lead generation through all stages of the sale. At each stage, marketing offers up different coverage based on the feedback from sales. And sales needs to be sure to provide that feedback every step of the way or the air cover may miss the mark. While each branch of the military has their command, the overall effort is led by the commander. That’s why I am a fan of companies having a Chief Revenue Officer, rather than a distinct VP Marketing and VP Sales.

It is through a recognition of shared goals subject to shared metrics and feedback loops that firms can obtain improved performance from the two departments that own revenue generation.

The research was sponsored by QuotaFactory.